Journal of Fluorine Chemistry, 51 (1991) 75-82

Received: June 9, 1990; accepted: October 17, 1990

SYNTHESIS OF 1,4-BIS(p-ARYLOXY-TETRAFLUOROPHENYL) BUTADIYNE MONOMERS FOR NONLINEAR OPTICS

YADONG ZHANG AND JIANXUN WEN

Shanghai Institute of Organic Chemistry, Academia Sinica 345 Lingling Lu, Shanghai 200032 (China)

SUMMARY

Novel diacetylenes with polyfluorophenyl groups directly bound to the diacetylene moiety, l,4-bis(p-aryloxy-tetrafluorophenyl)butadiynes, were prepared in four steps from pentafluoroiodobenzene and trimethylsilylacetylene.

INTRODUCTION

The work of Wegner and co-workers has shown that the solidstate polymerization of diacetylenes R-C=C-C=C-R' can yield large, defect-free, single crystalline and one-dimensional fully conjugated polydiacetylenes of the type [=C(R)-C=C-(R')C=][1-4]. The reactivity of polymerization is mainly controlled by the monomer crystal packing [3,4]. Nonlinear optical properties of polydiacetylenes have received considerable attention recently due to their demonstrated large third-order nonlinearities and potential application in the area of integrated optics [5-8]. Up to now quite a large number of symmetrical diacetylene monomers with methylene groups next to the diacetylene moiety have been prepared for nonlinear optics [4,6]. To achieve higher third-order nonlinearity, diacetylene mono-

0022-1139/91/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

mers with more π -electrons might be good candidates [9]. In this paper, we describe the synthesis of 1,4-bis(p-aryloxytetrafluorophenyl)butadiynes which are the monomers of poly-[1,4-bis(p-aryloxy-tetrafluorophenyl)butadiynes] used as nonlinear optical materials. The polymerization and nonlinear properties of these diacetylenes are now under study.

RESULTS AND DISCUSSION

1.4-Bis(p-aryloxy-tetrafluorophenyl)butadiynes (7a-i) were prepared via the following procedure.

 $TMEDA = (CH_3)_2 NCH_2 CH_2 N (CH_3)_2$

Scheme 1.

TABLE 1

(7a-i) from 1,4-Bis(pentafluorophenyl)butadiyne (5)								
	ArOK	Reaction conditions	Product 7a-i					
No	6 a -i	solvent/temp./time	No	Yield ^a	M.p.b			
				(%)	(°C)			
6a	Срок	THF/r.t./15 min	7a	85	186			
6 b	сн3-Ок	THF/r.t./15 min	7b	78	193			
6c	СН3	THF/r,t,/15 min	7c	75	171			
6đ	сі-	THF/r.t./25 min	7đ	88	195			
6e	с1-ОК	THF/r.t./6 h	7e	74	138			

Preparation of 1,4-Bis(p-aryloxy-tetrafluorophenyl)butadiynes

6f	Br-Cok	THF/r.t./30 min	7£	84	196
6 g	МО ₂ -ок	THF/45°C/l h	7g	73	240
6h	ло ₂ -ок	THF/r.t./l h	7ь	90	221
6i	онс-Ок	THF/r.t./45 min	7 i	86	236

а Isolated yield.

b Not corrected. Previously we have reported the palladium-catalyzed coupling reaction between pentafluoroiodobenzene (1) and trimethylsilylacetylene (2) [10] to give [(pentafluorophenyl)ethynyl]trimethylsilane (3) which yielded (pentafluorophenyl)ethyne (4) after removal of the trimethylsilyl group with sodium hydroxide in methanol at ambient temperature. 1,4-Bis(pentafluorophenyl) butadiyne (5) [11] was prepared from (4) in high yield by the method of Hay [12]. Nucleophilic substitutions on [(pentafluorophenyl)ethynyl]trimethylsilane give para-substituted products [13]. 1,4-bis(pentafluorophenyl)butadiyne (5) reacted with corresponding aroxides, ArOK (6a-i) to give 1,4-bis(paryloxy-tetrafluorophenyl)butadiynes (7a-i) in good yields.

We found that **7a**, **7b**, **7c**, **7e** and **7f** (substituents as shown in Table 1) turned violet or red upon exposure to heat and light to give insoluble polydiacetylenes, $[=C(R)-C\equiv C-(R)C=]_n$. It is well known that diphenyldiacetylene and dicarbazolyldiacetylene having aromatic rings directly bound to the diacetylene moiety are not polymerizable in the solid-state [14], and several substituted diphenyldiacetylenes give polydiacetylenes only in low conversion [15,16]. It is noteworthy that we found that diacetylenes with fluoro-aromatic rings directly bound to the diacetylene moiety have reactivities towards solid-state polymerization. Exposed to $\lambda = 5154$ Å laser, polymerizable fluoro-diacetylenes, **7a**, **7b**, **7c**, **7e**, **7f** and also **5** partially polymerized to yield one or several new C=C bonds [17] as shown in the EXPERIMENTAL PART.

EXPERIMENTAL

IR spectra were recorded on a Shimadzu IR-440 spectrometer. Raman spectra were recorded on a JY-T 800 spectrometer. 1 H NMR spectra were recorded on a Varian EM 360A (60 MHz) instrument. 19 F NMR spectra were recorded on a Varian EM 360L (60 MHz) instrument (high field is positive). MS spectra were recorded on a Finnigan-4021 spectrometer. [(Pentafluorophenyl)ethynyl]trimethylsilane (3) was prepared by the method reported previously [10].

(Pentafluorophenyl)ethyne (4): To a solution of [(penta-fluorophenyl)ethynyl]trimethylsilane (3; 14.5 g, 54.9 mmol) in methanol was added aqueous sodium hydroxide (0.05 M, 20 ml) at room temperature with stirring. After 3 h, the mixture was acidified with dilute hydrochloric acid and extracted with ether, and then dried with Na₂SO₄. The solvent was removed and the residue was distilled to give (pentafluorophenyl)acetylene (4) 7.2 g (69%); b.p. 53-54°C/mmHg (Ref. [18] b.p. 130-131°C). IR (neat); $\nu = 3300$, 2132, 1520, 1500 cm⁻¹. ¹H NMR (CCl₄/TMS): $\delta = 3.47$ (s, C=C-H) ppm. ¹⁹F NMR (CCl₄/CF₃COOH): $\delta = 59.71$ (m, 2 F, F_{arom}), 75.80 (t, 1 F, F_{arom}), 85.72 (m, 2 F, F_{arom}) ppm.

1,4-Bis(pentafluorophenyl)butadiyne (5) [12]: Cuprous chloride (0.5 g), N, N, N',N'-tetramethylethylenediamine (1.2 ml) and acetone (150 ml) were placed in a four-necked flask at room temperature. Oxygen was bubbled through the solution via a tube, and the mixture was stirred vigorously. (Pentafluorophenyl)ethyne (4; 5.8 g, 30 mmol) in acetone (30 ml) was added within 30 min. After 3.5 h, the acetone was removed and then dilute hydrochloric acid (50 ml, HCl/H₂O =1:10) was added. The solid was recrystallized from acetone-water to give 1,4-bis-(pentafluorophenyl)butadiyne (5) as white crystals 5.2g (90%); m.p. 114-115°C. IR(KBr): ν =1515, 1500, 1432 cm⁻¹. Raman (neat): ν =2233 (C=C of monomer), 2106 (C=C of polymer) cm⁻¹. ¹⁹F NMR (CCl₄/CF₃COOH): δ = 57.32 (m, 4F, F_{arom}), 71.20 (t, 2F, F_{arom}), 83.23 (m, 4 F, F_{arom}) ppm; MS m/z: 382 (M⁺). Analysis Found: C, 50.47%; F, 50.03%. C₁₆F₁₀ Calc.: C, 50.26%; F,49.74%.

Compounds 7a-i were new.

1,4-Bis[p-(4-chloro-phenoxy)-tetrafluorophenyl]butadiyne(7d) Typical procedure: To a solution of 1,4-(pentafluorophenyl)butadiyne (5; 100 mg, 0.26 mmol) in THF (2 ml) was added p-Cl-C₆H₄-OK (6d; 150 mg, 0.9 mmol) at room temperature with stirring for 25 min. Then the mixture was diluted with water (10ml) , a yellow solid appeared. The pale yellow product was recrystallized from acetone-water to give (7d) as colorless crystals; 138mg (88%), m.p. 195°C. IR (KBr): $\nu = 1596$, 1500, 1485, 1428 cm⁻¹. Raman (neat): $\nu = 2223$ cm⁻¹. ¹H NMR (CDCl₃/TMS) : $\delta = 6.92$ (d, 4 H, H_{arom}, J = 8.3 Hz), 7.38 (d, 4 H, H_{arom}, J = 8.3 Hz) ppm. ¹⁹F NMR (CDCl₃/CF₃COOH): $\delta = 57.23$ (m, 4 F, F_{arom}), 75.88 (m, 4 F, F_{arom}) ppm. MS m/z: 599 (M⁺). Analysis Found: C, 56.18%; H, 1.04%; F, 25.38%; Cl, 11.56%. C₂₈H₈Cl₂F₈O₂ Calc. C, 56.09%; H, 1.34%; F, 25.38%; Cl, 11.85%.

The following compounds were prepared similarly.

 $\begin{array}{l} 1.4-\text{Bis}[p-(4-\text{methyl-phenoxy})-\text{tetrafluorophenyl}]\text{butadiyne}\\ \hline (7b): m.p. 193 ^{\circ}\text{C. IR (KBr): } \nu = 1500, 1490, 1423 \ \text{cm}^{-1}. \ \text{Raman}\\ \hline (\text{neat}): \nu = 2223 \ (C \equiv C \ \text{of monomer}), 2106 \ (C \equiv C \ \text{of polymer})\text{cm}^{-1}\\ \cdot ^{1}\text{H NMR} \ (\text{CCl}_{4}/\text{TMS}): \delta = 2.33 \ (\text{s}, 6\text{H}, 2\text{xCH}_{3}), 6.87 \ (\text{d}, 4 \ \text{H}, \\ \text{H}_{arom}, J = 8.5 \ \text{Hz}), 7.15 \ (\text{d}, 4 \ \text{H}, \ \text{H}_{arom}, J = 8.5 \ \text{Hz}) \ \text{pm}.\\ ^{19}\text{F NMR} \ (\text{CCl}_{4}/\text{CF}_{3}\text{COOH}): \delta = 57.45 \ (\text{m}, 4 \ \text{F}, \ \text{F}_{arom}), 75.68 \ (\text{m}, \\ 4 \ \text{F}, \ \text{F}_{arom}) \ \text{ppm}. \ \text{MS m/z: 558} \ (\text{M}^{+}). \ \text{Analysis Found: C, 64.70\$}\\ ; \ \text{H}, 2.59\$; \ \text{F}, 26.92\$. \ \text{C}_{30}\text{H}_{14}\text{F}_8\text{O}_2 \ \text{Calc.: C, 64.52\$; H, 2.51\$}\\ ; \ \text{F}, 25.94\$. \end{array}$

 $\frac{1.4-\text{Bis}[p-(3,5-\text{dimethyl-phenoxy})-\text{tetrafluorophenyl}]\text{butadi-yne (7c): m.p. 171°C. IR (KBr): <math>\nu = 1500, 1485, 1423 \text{ cm}^{-1}.$ Raman (neat): $\nu = 2221$ (C=C of monomer), 2119, 2085 (C=C of polymer) cm⁻¹. ¹H NMR (CDCl₃/TMS): $\delta = 2.28$ (s, 12 H, 4xCH₃), 6.56 (m. 6 H, H_{arom}) ppm. ¹⁹F NMR (CDCl₃/CF₃COOH): $\delta = 57.33$ (m, 4 F, F_{arom}), 75.50 (m, 4 F, F_{arom}) ppm. MS m/z: 586 (M⁺). Analysis Found: C, 65.25%: H, 2.88%; F, 25.97%; C₃₂H₁₈F₈O₂ Calc. C, 65.53%; H, 3.07%; F, 25.94%.

 $\begin{array}{l} 1.4-\text{Bis}\left[p-(2,4-\text{dichloro-phenoxy})-\text{tetrafluorophenyl}\right]\text{butadiyne}\\ \hline (7e): m.p. 138\,^\circ\text{C. IR (KBr): } & \nu = 1587, 1495, 1478, 1430 \ \text{cm}^{-1}.\\ \hline \text{Raman (neat): } & \nu = 2115, 2080, 2075 \ (C \equiv \text{C of polymer}) \ \text{cm}^{-1}.\\ \hline ^1\text{H NMR (CDCl_3/TMS): } & \delta = 7.18-7.83 \ (\text{m, Harom}) \ \text{ppm. } ^{19}\text{F NMR}\\ \hline \delta = 57.33 \ (\text{m, 4F, F}_{arom}), 76.74 \ (\text{m, 4F, F}_{arom}) \ \text{ppm. MS m/z: 668}\\ \hline (\text{M}^+). \ \text{Analysis Found: C, 50.04\%; H; 0.62\%; F, 22.64\%; Cl, 21.26\%}\\ \cdot \ C_{28}\text{H}_6\text{Cl}_4\text{F}_8\text{O}_2 \ \text{Calc.: C, 50.30\%; H, 0.90\%; F, 22.75\%; Cl, 21.26\%}. \end{array}$

 $\begin{array}{l} 1,4-\text{Bis}[p-(4-\text{bromo-phenoxy})-\text{tetrafluorophenyl}] \text{ butadiyne (7f)}\\ \text{: m.p. 196°C. IR (KBr): } ^{\nu} = 1580, 1495, 1480, 1425 \ \text{cm}^{-1}. \ \text{Raman}\\ (\text{neat}): \ ^{\nu} = 2220 \ (C \equiv \text{C of monomer}), \ 2118, \ 2085, \ 2067 \ (C \equiv \text{C of}\\ \text{polymer}) \ \text{cm}^{-1}. \ ^{1}\text{H NMR} \ (\text{CDCl}_{3}/\text{TMS}): \ \delta = 6.67 \ (d, \ 4 \ \text{H}, \ \text{H}_{arom}, \ J \\ = 8.4 \ \text{Hz}), \ 7.21 \ (d, \ 4 \ \text{H}, \ \text{H}_{arom}, \ J \approx 8.4 \ \text{Hz}) \ \text{ppm}. \ ^{19}\text{F NMR} \ (\text{CDCl}_{3} \\ /\text{CF}_{3}\text{COOH}): \ \delta = 57.25 \ (m, \ 4\text{F}, \ \text{F}_{arom}), \ 76.15 \ (m, \ 4\text{F}, \ \text{F}_{arom}) \ \text{ppm}.\\ \text{MS m/z: 688 } \ (\text{M}^+). \ \text{Analysis Found: C, } 49.02\text{ $\%$; $\text{H},1.18\text{$\%$; $\text{F},22.43\text{$\%$}} \\ \text{Br, } 23.16\text{$\%$.} \ C_{28}\text{H}_8\text{Br}_2\text{F}_8\text{O}_2 \ \text{Calc.: C, } 48.84\text{$\%$; $\text{H}, 1.16\text{$\%$; $\text{F}, $22.09\text{$\%$}} \\ \text{Br, } 23.26\text{$\%$.} \end{array}$

 $\begin{array}{l} 1,4-{\rm Bis}[p-(2-{\rm nitro-phenoxy})-{\rm tetrafluorophenyl}]{\rm butadiyne}~(7g)\\ :\ {\rm m.p.}~240\,^{\circ}{\rm C.}~{\rm IR}~({\rm KBr});\ \ ^{\nu}=1583,\,1493,\,1469,\,1420\,\,{\rm cm}^{-1}.\,\,{\rm Raman}\\ ({\rm neat});\ ^{\nu}=2225\,\,{\rm cm}^{-1}.\,\,^{1}{\rm H}~{\rm NMR}~({\rm acetone-d}_6/{\rm TMS});\ \ \delta=7.00-8.00\\ ({\rm m,~H}_{\rm arom})~{\rm ppm}.\,\,^{19}{\rm F}~{\rm NMR}~({\rm acetone-d}_6/{\rm CF}_3{\rm COOH});\ \ \delta=60.34~({\rm m,~4F},\,\,{\rm F}_{\rm arom}),\,79.79~({\rm m,~4F},\,\,{\rm F}_{\rm arom})~{\rm ppm}.\,\,{\rm MS}~{\rm m/z};\,\,620~({\rm M}^+).\,\,{\rm Analysis}\\ {\rm Found};\ {\rm C},~54.10\,\%;\,\,{\rm H},\,1.08\,\%;\,\,{\rm N},\,4.29\,\%;\,\,{\rm F},\,24.99\,\%.\,\,{\rm C}_{28}{\rm H}_8{\rm F}_8{\rm N}_2{\rm O}_6\\ {\rm Calc.;}\ {\rm C},~54.19\,\%;\,\,{\rm H},\,1.29\,\%;\,\,{\rm N},\,4.52\,\%;\,\,{\rm F},\,24.52\,\%. \end{array}$

 $\begin{array}{l} 1,4-{\rm Bis}\{{\rm p-(3-nitro-phenoxy)-tetrafluorophenyl}\}{\rm butadiyne}~(7h)\\ :\ {\rm m.p.}~221\,^\circ{\rm C.}~{\rm IR}~({\rm KBr});\ \nu\ =\ 1580,\ 1490,\ 1482,\ 1422\ {\rm cm}^{-1}.\ {\rm Raman}\\ ({\rm neat}):\ \nu\ =\ 2221\ {\rm cm}^{-1}.\ {}^1{\rm H}~{\rm NMR}~({\rm acetone-d}_6/{\rm TMS});\ \delta\ =\ 7.34-7.44\\ ({\rm m,~Harom})~{\rm ppm}.\ {}^{19}{\rm F}~{\rm NMR}~({\rm acetone-d}_6/{\rm CF}_3{\rm COOH});\ \delta\ =\ 60.00~({\rm m,~4F},\ {\rm F}_{\rm arom}),\ 78.00~({\rm m,~4F},\ {\rm F}_{\rm arom})~{\rm ppm}.\ {\rm MS}~{\rm m/z};\ 620~({\rm M}^+).\ {\rm Analysis}\\ {\rm Found:}~{\rm C},\ 53.978;\ {\rm H},\ 1.058;\ {\rm N},\ 4.368;\ {\rm F},\ 24.448.\ {\rm C}_{28}{\rm H}_8{\rm F}_8{\rm N}_2{\rm O}_6\\ {\rm Calc.:}~{\rm C},\ 54.198;\ {\rm H},\ 1.298;\ {\rm N},\ 4.258;\ {\rm F},\ 24.528.\end{array}$

7.40 (d, 4 H, H_{arom}, J = 8.0 Hz), 7.93 (d, 4 H, H_{arom}, J = 8.0 Hz), 9.82 (s, 2 H, 2xCHO) ppm. ¹⁹F NMR (DMSO-d₆/CF₃COOH): δ = 59.12 (m, 4 F, F_{arom}), 78.34 (m, 4 F, Farom) ppm. MS m/z: 586 (M⁺). Analysis Found: C, 61.38%; H,1.42%; F,26.12%. C₃₀H₁₀F₈O₄ Calc.: C, 61.43%; H, 1.71%; F, 25.54%.

REFERENCES

- 1 G. Wegner, Z. Naturforsch., 24b (1969) 824.
- 2 G. Wegner, Makromol. Chem., 145 (1971) 85.
- 3 D. Bloor and R.R. Chance, 'Polydiacetylenes', D. Bloor and R.R. Chance Eds., Martinus Nijhoff, Dordrecht, 1985.
- 4 H.J. Cantow, 'Polydiacetylenes', Advances in Polymer Science 63, H.J. Cantow Ed., Springer-Verlarg, 1984.
- 5 D.J. Sandman, 'Crystallographically Ordered Polymers', D.J. Sandman Ed., ACS Symp. Ser., **337**, Washington, DC, 1987.
- 6 D. S. Chemla and J. Zyss, 'Nonlinear Optical Properties of Organic Molecules and Crystals', D. S. Chemla and J. Zyss Eds., Academic Press, Orlando, FL, Vol.2 (1987).
- 7 D.J. Williams, in D.J. Williams (ed.), 'Nonlinear Optical Properties of Organic and Polymer Materials', ACS Symp. Ser., 233, Washington, DC, 1983.
- 8 D.J. Sandman and Y.J. Chen, Polymer, 30 (1989) 1027.
- 9 H. Matsuda, H. Nakanishi, N. Minami and M.Kato, Mol. Cryst. Liq. Cryst., 160 (1988) 240.
- 10 Y.D. Zhang and J.X. Wen, J. Fluorine Chem., 47 (1990) 533.
- 11 F.Waugh and D.R.M.Walton, J. Organometall.Chem., <u>39(1972)</u> 275
- 12 A.S. Hay, J. Org. Chem., 27 (1962) 3320.
- 13 Y.D. Zhang and J.X. Wen, J. Fluorine Chem., 49 (1990) 293.
- 14 J.J. Mayerle and M.A. Flandrera, Acta. Cryst. B., <u>34</u> (1978) 1374.
- 15 G. Wegner, J. Polym. Sci., Polym. Lett. Ed., 9 (1971) 133.
- 16 H. Matsuda, H.Nakanishi, S.Kato and M.Kato, J. Polym. Sci. , Polym. Chem., Ed., 25 (1987) 1663.
- 17 A. J. Melveger and R. H. Baughman, J. Polym. Sci., Polym. Phys. Ed. <u>11</u> (1973) 603.
- 18 P.L. Coe, R.G. Plevey and J.C. Tatlow, J. Chem. Soc., [C] (1972) 275.